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 Modeling Distance Structures in Consumer

 Research: Scale Versus Order in

 Validity Assessment

 DANIEL R. DENISON
 CLAES FORNELL*

 Confirmatory multidimensional scaling (CMDS) is presented as a spatial technique
 for structural modeling based on ordinal assumptions, and as an alternative to met-
 ric techniques such as LISREL. The article links both techniques to the multitrait-
 multimethod matrix and presents a system for deriving measures of symmetric
 construct relationships, measurement error, and goodness of fit. Examples show
 that CMDS and LISREL often give comparable results, but that LISREL is sensitive
 to the magnitude of correlations whereas CMDS is sensitive only to their order. The
 trade-offs involved in assumptions, results, and interpretations with these methods
 are highlighted in the conclusion.

 For the assessment of convergent and discrimi-
 nant validity in consumer research, one of the

 dominant approaches for the past 25 years has been
 Campbell and Fiske's (1959) multitrait-multimethod
 matrix (MTMM).l Since its inception, many methods
 have been suggested for its analysis (Levin, Montag,
 and Comrey 1983; Schmitt and Stults 1986). How-
 ever, because of the ambiguous rules for assessing the
 various validity criteria, researchers have often
 turned to techniques such as analysis of variance
 (Stanley 1961), factor analysis (Jackson 1975), prin-
 cipal component analysis (Golding and Seidman
 1974) and various types of causal modeling (Werts
 and Linn 1970), including covariance structure anal-
 ysis via LISREL (Bagozzi 1980).

 Using these more powerful methods of data analy-
 sis has overshadowed a critical property of the origi-
 nal MTMM approach-the ordinal nature of the
 analysis. For example, the basic MTMM criteria for
 discriminant validity are expressed in ordinal terms;
 each indicator of a given trait must be more highly
 correlated with other indicators of that trait than with
 the indicators of another trait (particularly if the indi-
 cators share a common method). In contrast, metric

 methods such as factor analysis or covariance struc-
 ture analysis move well beyond ordinal criteria and
 specify MTMM criteria in parametric terms.

 This article discusses confirmatory multidimen-
 sional scaling (CMDS) as a structural modeling tech-
 nique based on ordinal assumptions about the level
 of measurement, rather than the metric assumptions
 of covariance structure analysis. We add to earlier
 work on confirmatory multidimensional scaling
 (Denison 1982; Fornell and Denison 1981, 1982) by
 presenting (1) a new system for placingmeasurement
 and theory constraints on multidimensional scaling
 (MDS) solutions, (2) a new method for estimating
 constructs, symmetric construct relationships, and
 measurement error, and (3) a new approach to assess
 goodness of fit.

 It is suggested that CMDS can be both an alterna-
 tive and a complement to covariance structure analy-
 sis. Both methods deal with multiple measures, multi-
 ple constructs, and the incorporation of a priori
 theory- and measurement-based constraints in a solu-
 tion. We also suggest that nonmetric methods are, in
 many ways, closer to the original MTMM formula-
 tion than is covariance structure analysis.

 After a presentation of the CMDS approach to
 structural modeling, our approach is illustrated with
 two examples. These results are compared to parallel
 analyses using LISREL VI (Joreskog and Sorbom
 1984). The subsequent discussion compares the as-
 sumptions, parameter estimations, and interpre-
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 480 THE JOURNAL OF CONSUMER RESEARCH

 tations of the two methods, and highlights the inher-
 ent trade-offs presented by structural modeling with
 CMDS.

 CMDS AND THE MULTITRAIT-
 MULTIMETHOD MATRIX

 The interpretation of a CMDS solution follows the
 MTMM logic very closely. Measures of proximity
 (such as correlations) are represented as distances
 such that variables with the highest proximity appear
 closest together in the solution. The clusters of vari-
 ables closest together are treated as multiple measures
 of the same construct. Adjacent clusters of variables
 are interpreted as related constructs. Thus, the basic
 MTMM logic necessary to distinguish convergent
 and discriminant validity can easily be translated into
 a multidimensional scaling model.

 Imposing theoretical constraints on an MDS solu-
 tion via CMDS makes the MTM-M logic more explicit
 by providing an additional set of theoretically derived
 distance constraints, defined in MTMM terms, that
 must be satisfied by the solution. Thus, the final con-
 firmatory solution must represent not only the origi-
 nal correlations or proximity measures, but also the
 constraints implied by convergent, discriminant, and
 nomological validity.

 One fundamental difference between factor analy-
 sis and multidimensional scaling'must be acknowl-
 edged at the outset: in multidimensional scaling, con-
 structs are primarily represented by clusters of vari-
 ables, rather than by underlying dimensions as in
 factor analysis. Although the underlying dimensions
 themselves may have meaning in MDS, they also
 serve to translate the proximity data into distances.
 Once dimensionality has been established, assess-
 ment of validity is based upon an analysis of the dis-
 tances between points, rather than the dimensions in
 which distances are displayed. Clusters of variables,
 as well as dimensions, represent constructs.

 There are several computer algorithms now avail-
 able for CMDS. The analyses presented here use
 CMDA (Borg and Lingoes 1980), although similar re-
 sults can be obtained with other techniques such as
 MDSCAL-5 and KYST (Kruskal and Wish 1978).
 Other techniques permit linear constraints (Bentler
 and Weeks 1978; Carroll, Pruzansky, and Kruskal
 1980), non-linear constraints (Lee and Bentler 1980)
 and equality constraints (Bloxom 1978) to be im-
 posed on MDS solutions.

 IMPOSING VALIDITY CONSTRAINTS

 This section defines a system for placing theory-
 and measurement-based constraints, derived using
 the MTMM framework, on a CMDS solution. Con-
 vergent validity requires that multiple measures of
 the same construct converge on that construct, and

 discriminant validity implies that constructs can be
 distinguished from one another through their mea-
 sures.

 Convergent and Discriminant Validity

 To define a set of constraints that assess convergent
 and discriminant validity, we propose a system that
 provides sets of constraints that vary in the stringency
 of the convergent-discriminant validity requirements
 (cf. Borg 1977; Guttman 1959).

 To illustrate, suppose that two constructs under
 consideration are represented by two geometric re-
 gions Ra and Rb, with na and nb points, respectively.
 In this case, a definitional mapping system for cluster-
 ing points according to convergent-discriminant re-
 quirements can be expressed as follows: each point of
 Ra must be closer to (na, na - 1, . . ., 1) points of Ra
 than it is to (nb, nb- 1, . . ., 1) points of Rb.

 Constraint condition nanb, for example, requires
 that each point within Ra (or each indicator of con-
 struct 1) be closer to all other points in that region (all
 other indicators of the same construct) than to any
 point in region b. Constraint condition na, nb - 1 im-
 plies that each point within Ra be closer to all other
 points within the region than to all but one point in
 region b. The nanb set of constraints represents the
 most stringent form of convergent-discriminant va-
 lidity, while the other possible constraint conditions
 represent progressively weaker operationalizations of
 convergent-discriminant validity.2

 Nomological Validity

 A similar approach can also be used to define a sys-
 tem for imposing a set of theory-based constraints.
 This form of validity requires that the solution reflect
 links between constructs as suggested by a substantive
 theory. As an illustration, consider a three-construct
 model where the theory specifies that construct B me-
 diates the relationship between construct A and con-
 struct C. In this case, a definitional mapping system
 that operationalizes a set of nomological validity con-
 straints would specify that each point of Ra must be
 closer to (nb, nb - 1, . . ., 1) points of Rb than to (ne,
 n, - 1, . . ., 1) points of Rc, where Rb is a region adja-
 cent to Ra; R, is a region distant from Ra; and na, nb,
 and n, are the number of points in each of the respec-
 tive regions.

 So, for example, constraint condition ng, nc* re-
 quires that each point of region A be closer to all
 points within region b than to any point within region
 c. (An asterisk is added to distinguish nomological
 from convergent-discriminant constraints.) This rep-
 resents testing criteria that operationalize the theoret-

 2This approach represents an extension of Lingoes' ( 1981, p. 290)
 system for defining regionality and contiguity.
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 ical assertion that construct A should be more closely
 related to construct B than to construct C. As in the
 convergent-discriminant example presented pre-
 viously, the other possible conditions specified by the

 mapping schema (nt, n* - 1 and nt - 1, nc*, and so
 on) provide operationalizations of weaker forms of
 nomological validity.

 Since structural modeling requires that both mea-
 surement- and theory-based constraints be placed on
 a solution simultaneously, the analyst's task is to pick
 a combination of more or less stringent operational-
 izations of these two types of validity. The combina-
 tion na nbn* n* represents the most stringent set of
 constraints. Less stringent interpretations of mea-
 surement- and theory-based validity may also be de-
 fined. One of the features of the system is flexibility.
 Any combination of constraints can be imposed, and
 the system can easily be extended to more complex
 models with a greater number of latent constructs and
 variables.

 EVALUATIVE STATISTICS:
 ASSESSING FIT

 Before estimating the relationships between spe-
 cific variables, it is necessary to assess the congruence
 between the model and the data. Some measure of fit
 is needed for any procedure that attempts to compare
 the congruence of a theoretical model and empirical
 data. Much like the literature on evaluating the fit of
 covariance structure models, the choice of fit index in
 distance models is not without controversy.

 This article follows the approach taken by Lingoes
 and Borg (1983a, 1985), who suggest using an "effi-
 cacy coefficient" as an overall measure of fit. This co-
 efficient is based on the partial correlation between
 the order of the distances in the theoretically con-
 strained and unconstrained configurations, partialing
 out the order of the original proximity data. This par-
 tial correlation, p(X, Z. Y)-where X represents the
 order of the distances in an unconstrained MDS con-
 figuration; Z, the order of the distances in a corre-
 sponding MDS configuration with theoretical con-
 straints; and Y, the order of the original proximity
 data-thus represents the association between the
 constrained and unconstrained configurations that
 cannot be attributed to the original proximity data.
 When the ratio of the partial correlation p to the co-
 efficient of alientation (K),

 p(X, Z. Y)
 1l - p(XZ)2 ' (1)

 exceeds 3, there is evidence for an acceptable fit, but
 if the ratio is less than 1, there is a lack of fit. These
 cutoffs are obviously somewhat arbitrary, although
 not totally void of a statistical argument. In this sense,
 they are similar to the fit indices for covariance struc-

 ture analysis developed by Bentler and Bonett (1980),
 Sorbom and Joreskog (1982), and Fornell and
 Larcker ( 1981). The statistical argument is analogous
 to the rule of thumb that measures of association two
 to three times greater than their standard error are in-
 terpreted as "significant." For intermediate cases
 with a ratio between 1 and 3, Lingoes and Borg
 (1983b) describe an alternative decision rule that
 takes into account the sample size, the number of
 variables, the number of dimensions, and the per-
 centage of distances that has been constrained.

 MODEL PARAMETERS

 If a model demonstrates an acceptable fit according
 to the criteria discussed in the previous section, the
 estimation of constructs, the indicator-construct rela-
 tionships, and the construct-construct relationships
 become of interest. The scaling procedure presented
 here allows numerical values to be assigned to each of
 these parameters.

 Construct Measurement

 For any set of multiple measures of a single con-
 struct in covariance structure analysis, it is assumed
 that at least some of the variation is due to a "true"
 value. If measurement errors are random, classical
 measurement theory implies that the true value of the
 unobserved variable is approximated by the expected
 value of the observed indicators. Thus, the true value
 for an MDS cluster of indicators representing an un-
 observed construct may be calculated by using the
 mean value on each dimension for the points in the
 region. That is,

 I n

 Cik =- Z Xijk, (2)
 nij=1

 where Cik is the projection of the ith centroid on the
 kth dimension, Xijk is the projection of the jth indica-
 tor of the ith construct in the kth dimension, and ni
 is the number of indicators in the ith construct.

 Indicator-Construct Measurement

 Once the centroid is determined, the Euclidian dis-
 tance between an indicator and its associated con-
 struct serves as a measure of association that provides
 a basis for addressing measurement error.3 Similar to
 true score theory, measurement error is thus consid-
 ered to be equal to the difference between observed
 and true values. Summing over dimensions, we repre-
 sent errors in measurement as:

 3It should be recognized that this estimate of measurement error
 is relative and dependent on other variables in the model, rather
 than an absolute measure of reliability that could be compared
 across analyses, such as an alpha coefficient.
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 TABLE 1

 CORRELATION MATRIX FOR OBSERVED INDICATORS

 Indicator xY x2 X3 yi Y2 Y3 Z1 Z2 Z3

 x, 1.00

 x2 .523 1.00
 X3 .611 .522 1.00
 Yi .571 .781 .481 1.00
 Y2 .696 .707 .659 .826 1.00
 Y3 .692 .585 .659 .533 .613 1.00
 z, .656 .801 .508 .875 .819 .599 1.00
 Z2 .537 .668 .417 .815 .770 .493 .825 1.00
 Z3 .523 .775 .537 .755 .740 .578 .808 .719 1.00

 NOTE: N = 100; simulated data is from Jagpal and Hui (1980, p. 359), and is reprinted with permission from the American Marketing Association.

 m

 eij= [ -Xijk)I/, (3)
 k= 1

 where eij is the distance between the ith construct and
 itsjth indicator.

 Construct-Construct Measurement

 Euclidian distances between the centroids that rep-
 resent the constructs in a structural model are the ba-
 sis for computing construct-construct links. That is,

 m

 dpq = [ E (Cpk - Cqk )2]1/2 (4)
 k= 1

 where dpq is the distance between the pth and qth con-
 structs, m is the number of dimensions, Cpk is the pro-
 jection of the pth centroid in the kth dimension, and
 Cqk iS the projection of the qth centroid in the kth
 dimension.

 AN ANALYSIS STRATEGY

 The previous sections outlined methods for impos-
 ing validity constraints, assessing fit, and obtaining
 model parameters. This section describes an ap-
 proach that combines these elements into an analysis
 strategy and an integrated system for modeling dis-
 tance structures. A brief overview of the general strat-
 egy precedes an illustration of the procedure with two
 empirical examples.

 Modeling distance structures via CMDS begins
 with a matrix of proximity measures representing the
 relationships between the observed variables to be
 modeled. Proximity measures may be correlations,
 similarity judgments, or other measures of proximity,
 as long as at least ordinal-level assumptions are met.
 This matrix is then scaled to determine the number
 of dimensions needed to adequately represent the
 proximity measures as distances in multidimensional
 space.

 Once dimensionality is established, confirmatory
 testing can begin by imposing the most rigorous set

 of measurement and theory constraints, such as the
 strong cluster/strong theory condition (nfanbnt n*))
 discussed earlier. This allows for the strongest possi-
 ble test of a theory and clearly reveals those indicators
 not in keeping with the constraints implied by the
 combined set of convergent-discriminant and nomo-
 logical validity constraints. If the strongest set of con-
 straints is satisfied, the model and data are assumed
 congruent, and the model parameters can be com-
 puted. The analysis, in this instance, is straightfor-
 ward.

 The more typical result is a less than perfect fit.
 Convergent-discriminant or nomological constraints
 may be violated by particular indicators, and clusters
 may overlap to varying degrees. Again, this is similar
 to the analysis of fit in covariance structure analysis.
 Rarely, if ever, does the fitting function reach its min-
 imum of zero. Even when a likelihood ratio statistic
 is used, a decision still must be made regarding the
 acceptability of the resulting fit.

 When an acceptable fit is not obtained, one may ei-
 ther reject the model or pose an alternative set of con-
 straints that is less rigorous, yet still theoretically de-
 fensible. If the less rigorous set of constraints can be
 satisfied, one may then conclude that the model fits
 well enough to justify computing parameters.

 The goal is to obtain a parsimonious representation
 of the proximities, the distances, and the theoretical
 constraints. The data must first be represented in the
 smallest geometric space, so that little or no new in-
 formation can be added by moving to a higher dimen-
 sionality. Then, theoretical constraints are added to
 make the alternative interpretations of the distances
 between points and clusters explicit, and to provide a
 test of the degree of fit between the data and the the-
 ory. Until a solution can satisfy both data and theory
 constraints, a truly parsimonious expression of the
 model has not been obtained.

 ILLUSTRATIONS
 Two step-by-step applications of the suggested

 analysis strategy are presented, and the results are
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 FIGURE A

 MINISSA SOLUTION IN TWO DIMENSIONS
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 NOTE: Xi = awareness measures; Yi = preference measures; Zi = intention measures.

 compared to a covariance structure analysis using
 LISREL to highlight some of the relative advantages
 and disadvantages of modeling distance and covari-
 ance structures.

 Example of a Poor Fit

 The data used for this illustration are drawn from
 a traditional hierarchy of effects model of awareness,
 preference, and intention. The correlation matrix
 (adapted from Jagpal and Hui 1980, p. 359) is pre-

 sented in Table 1.4 A path analysis of these data was
 interpreted as providing support for the hierarchy of
 effects model by the original authors.

 4The reason we are using a correlation matrix in our illustration
 is to demonstrate the differences and similarities between distance
 structures and covariance structures modeling. Correlational data
 generally represent metric input, necessary for covariance structure
 analysis but not for distance structure analysis. In some cases, it is
 possible to use covariance structure analysis on ordinal data (Mu-
 then 1983), but then the assumption is that the variables are gener-
 ated by underlying continuous variables.

This content downloaded from 141.217.20.120 on Mon, 19 Mar 2018 14:02:19 UTC
All use subject to http://about.jstor.org/terms



 484 THE JOURNAL OF CONSUMER RESEARCH

 TABLE 2

 CONSTRAINT MATRIX FOR STRONG CLUSTER/STRONG
 THEORY (nanbn*nC *) CMDA TESTS

 Variable

 X1

 x2 3
 X3 3 3
 Yi 2 2 2
 Y2 2 2 2 3
 Y3 ' 2 2 2 3 3
 Zt 1 1 1 2 2 2
 Z2 1 1 1 2 2 2 3
 Z3 1 1 1 2 2 2 3 3

 NOTE: The values in the matrix represent ordered distance constraints:
 3s represent the strongest associations and smallest distances, while 1 s repre-
 sent the greatest distances. There are no constraints on the order of distances
 within a given category (e.g., all 2s need not be equal, but can assume any
 order as long as each 2 distance is smaller than each 1, yet larger than each 3).

 Using this model and data as a point of departure
 for a CMDS analysis, we begin by asking a fundamen-
 tal question: Are the latent variables (awareness, pref-
 erence, and intention) as measured in this study, in
 fact "different"? The first suggestion of limited con-
 vergent-discriminant validity comes from visual in-
 spection of the initial unconstrained MDS configura-
 tion presented in Figure A (Guttman 1968). This two-
 dimensional configuration fits the data reasonably
 well (Guttman/Lingoes coefficient of alienation (K)
 = 0.13, stress = 0.07). However, the latent variables
 seem to exhibit very little convergent-discriminant
 validity. The clusters are not distinct, and the aware-
 ness and preference constructs each have elements
 that are far more closely related to the intention con-
 struct than to their own shared elements.

 Imposing a set of strong validity constraints on this
 solution provides a test of both convergent-discrimi-
 nant and nomological validity. These constraints are
 presented in Table 2.

 The Lingoes-Borg efficacy coefficient for this test
 shows that the congruence hypothesis is not sup-
 ported. The criterion p(X, Z. Y) = 0.130 with the co-
 efficient of alienation K = 0.881 does not even ap-
 proach the minimum level of fit, p(X, Z. Y) > K.
 Thus, the lack of congruence between this form of the
 model and the proximity data is quite clear.5

 Several weaker forms of the model were also tested.
 Convergent-discriminant and nomological constraints

 were relaxed both jointly and alternatively for those
 data points in the model that did not fit the required
 order. Even with these weaker interpretations of the
 constraints implied by the model and operationaliza-
 tion of the theory, the fit remained poor. When con-
 straints on variables X2, X3, YI, and Y3 were removed,
 the partial correlation coefficient p(X, Z. Y) = (0.23)
 was still much smaller than the coefficient of alien-
 ation (K = 0.80). This makes it apparent that even
 the most minimal test of the congruence hypothesis
 cannot be met.

 As a point of comparison, the data matrix in Table
 1 was analyzed using LISREL VI to examine the
 differences between CMDS and covariance structure
 analyses of these data. These analyses provided sim-
 ilar results to the CMDS analyses. The fit was poor,
 and there were substantial problems with discrimi-
 nant validity. As some of the constraints were re-
 laxed, the fit improved somewhat, but not apprecia-
 bly. This also parallels the CMDS results as the con-
 straints were gradually relaxed.

 Example of a Good Fit

 A second example illustrates the application of
 CMDS and the estimation of model parameters in a
 case where the data fit the model quite well. This ex-
 ample is drawn from research on the S-O-R model of
 consumer involvement (Arora 1982; Slama and
 Tashchian 1987). This model distinguishes three
 types of consumer involvement: situational involve-
 ment (S), which stems from certain purchase situa-
 tions; enduring involvement (0), which stems from
 values important to the individual consumer; and re-
 sponse involvement (R), which is derived from the
 mental and behavioral responses during purchase de-
 cisions.

 Slama and Tashchian (1987) present a series of
 analyses of the MTMM matrix (see Table 3). This 9
 X 9 matrix compares three measures (Likert scale, se-
 mantic differential, and Stapel scale) of each of the
 three types of consumer involvement. Slama and
 Tashchian demonstrate, through covariance struc-
 ture analyses of the data, that the S-O-R form of the
 model fits the data reasonably well, but that enduring
 involvement is a much weaker predictor of response
 involvement than is situational involvement. Fur-
 thermore, the impact that enduring involvement has
 on response involvement can be accounted for
 through the indirect path from enduring involvement
 to situational involvement to response involvement.
 Eliminating the direct effect from enduring involve-
 ment to response involvement does not diminish the
 fit. Their results for their revised model are presented
 in Table 4.

 Figure B presents the CMDS analyses of the Slama-
 Tashchian matrix. The unconstrained data scaled

 5A second fitting criterion, the maximum likelihood ratio used
 by MacKay and Zinnes (1984), also shows a much poorer fit when
 the theoretical constraints are added to the solution. Without theo-
 retical constraints, the likelihood of the solution in Figure A is
 58.02. When theoretical constraints are added, this likelihood
 drops to 13.47. For probabilistic approaches to multidimensional
 scaling, see DeSarbo, DeSoete, and Eliashburg 1987; DeSarbo, Oli-
 ver, and DeSoete 1986; DeSarbo and Rao 1986; MacKay and Zin-
 nes 1986; and Zinnes and Mac Kay 1983.
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 TABLE 3

 SLAMA-TASHCHIAN MULTITRAIT-MULTIMETHOD MATRIX

 Variable X1 X2 X3 Yi Y2 Y3 Zl Z2 Z3

 x1 1.000

 x2 0.624 1.000
 X3 0.610 0.628 1.000
 Yi 0.524 0.514 0.524 1.000
 Y2 0.386 0.489 0.484 0.697 1.000
 Y3 0.384 0.488 0.484 0.735 0.725 1.000
 zI 0.444 0.409 0.349 0.313 0.275 0.310 1.000
 Z2 0.294 0.317 0.303 0.269 0.170 0.251 0.673 1.000
 Z3 0.301 0.337 0.300 0.262 0.246 0.221 0.772 0.664 1.000

 NOTE: xl, Yl, = Likert scale items; x2, Y2, z2 = semantic differential items; x3, y3, z3 = Stapel scale items. This material is reprinted with permission from the
 Academy of Marketing Science.

 TABLE 4

 MAXIMUM LIKELIHOOD PARAMETER ESTIMATES AND
 T-VALUES FOR THE REVISED S-O-R MODELa

 Shampoo

 - Model parameter Parameter value T-value

 XI 1 .000b _
 A2 1.056 7.628
 )\3 1.026 7.450
 4 1.000b _
 '\5 0.958 9.625
 X6 0.995 10.079
 )X7 1 .000 b _
 A8 0.837 8.697
 Ag 0.947 10.101
 #I 0.803 6.008
 f2 0.615 4.514
 B3 o . ooob _
 Pi 0.588 4.181
 {2 0.362 4.137
 {3 0.594 4.934
 C- 1 0.412 5.260
 E2 0.258 4.432
 E3 0.183 3.023
 64 0.345 4.682
 f'5 0.319 5.104
 E6 0.429 5.812
 E7 0.381 5.012
 ES 0.265 4.525
 C-9 0.268 4.278

 aX2 = 19.12, df =25, p = 0.791 (from Slama and Taschian 1987).
 bConstrained parameters.

 nicely in two dimensions, (K = 0.07). The strongest
 set of validity constraints, identical to those presented
 in Table 2, produced a partial correlation ratio of
 0.966 to 0.065. This ratio of 14.9 is well in excess of
 the 3.0 criterion recommended by Lingoes and Borg
 (1983b, 1985).

 The model parameters shown in Figure C lead to
 the same interpretation as the LISREL analyses origi-
 nally presented by Slama and Tashchian. The indica-

 tor/construct links are high in all cases, and situa-
 tional involvement is much more closely related to
 response involvement than is enduring involvement.
 The placement of the situational involvement cluster
 on a direct axis (the underlying dimension of cause-
 effect) from the enduring cluster to the response clus-
 ter also implies, like the LISREL analysis, that there
 is little about the association between the enduring
 and response clusters that cannot be attributed to the
 situational cluster.

 CMDS does not, of course, make inferential state-
 ments of theory-data fit, but the fit does remain con-
 stant as sample size and magnitude of the input corre-
 lations vary. As several authors (Babakus, Ferguson,
 and Joreskog 1987; Fornell and Larcker 1981) have
 noted, this is not the case with a covariance structure
 analysis.

 To illustrate this, a separate series of LISREL anal-
 yses was conducted, systematically varying the mag-
 nitude of the input correlations (r) from 0.8 to 1.2
 times those in the original input matrix. The effects
 of this on the probability of fit, the Bentler-Bonett in-
 dex, and the x2/dfratio are presented in Figure C.

 Figure C shows that the two most commonly used
 measures of fit, the chi square ratio and its associated
 probability, both change from a nearly perfect fit
 when correlations are reduced in the 0.8r solution to
 a highly unacceptable fit in the 1.1 r and 1.2r solu-
 tions. A third measure of fit, the Bentler-Bonett in-
 dex, which was specifically developed to address the
 problems associated with the first two measures, also
 shows slightly worse (but still highly acceptable) fit as
 the strength of correlations is increased. Model pa-
 rameters in the LISREL model also increase as the
 magnitude of the underlying correlations increases.
 The fit and parameters of a CMDS model, of course,
 would remain constant across each of these cases.

 This illustration suggests that covariance structure
 analysis can be highly sensitive to the magnitude of
 the correlations between observed variables and rela-
 tively insensitive to order relations. This is because
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 FIGURE B

 CMDA ANALYSIS OF CONSUMER INVOLVEMENT MODEL
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 NOTE: Xi = enduring involvement measures; Yi = situational involvement measures; Zi = response involvement
 measures.

 weak correlations result in weak cross-products and
 small resulting fractions in the loss function. CMDS,
 in contrast, is invariant with respect to changes in
 magnitude as long as order relations are maintained.
 The correlations may be large or small (or even posi-
 tive or negative) as long as the order does not vary.

 SUMMARY AND DISCUSSION

 This article has presented a new approach to struc-
 tural modeling and validity testing-distance struc-

 ture analysis using nonmetric confirmatory multidi-
 mensional scaling. There are many similarities with
 covariance structure analysis: both methods are fun-
 damentally concerned with evaluating the degree of
 congruence between a hypothesized model and em-
 pirical data where the model specifies a system of re-
 lated constructs, each with one or more measures.
 The relationship of the techniques to the MTMM
 logic is virtually identical.

 . The MTMM approach as formulated by Campbell
 and Fiske (1959) is specified in ordinal terms, but a

This content downloaded from 141.217.20.120 on Mon, 19 Mar 2018 14:02:19 UTC
All use subject to http://about.jstor.org/terms



 MODELING DISTANCE STRUCTURES 487

 FIGURE C

 THE EFFECTS OF MAGNITUDE OF CORRELATION ON
 COVARIANCE STRUCTURE ANALYSIS
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 metric scale is assumed whenever covariance structure
 analysis is, applied. As this article illustrates, it can
 make a great difference which assumption is made.
 Which is more important-scale or order? By default,
 the CMDS user favors ordinal measurement (which
 seems appropriate in the MTMM context), whereas
 the covariance structure analyst favors a metric scale.
 However, in many circumstances both properties
 would seem important for validity assessment and can
 be used in a complementary fashion.

 Table 5 summarizes the key differences between
 CMDS and covariance structure analysis and can serve
 as a guide for joint application of these techniques: The
 differences are presented in terms of the implications of
 the scale versus order assumption, the differences in
 measurement, validity criteria, inferential powers, func-
 tional forms, and the impact of sample size and magni-
 tude of input correlations.

 Basically, this table shows that CMDS provides a de-
 scriptive modeling technique based on a weaker set of
 assumptions and a more conventional application of the
 null hypothesis. The trade-off is that a statistical theory
 for inferential power has yet to be developed for individ-
 ual parameters as well as model fit.

 In conclusion, there are several situations in which dis-
 tance structure analysis may be a useful complement or
 even an alternative to covariance structure analysis.
 First, it seems that when correlations are low to begin
 with (as in the case of large measurement errors), covari-

 TABLE 5

 SUMMARY COMPARISON OF DISTANCE STRUCTURE AND
 COVARIANCE STRUCTURE ANALYSIS

 Distance Covariance
 Dimension structure analysis structure analysis

 Level of Ordinal non- Interval parametric

 measurement parametric

 Criterion of validity Order Metric

 Nature of Regions in Factors or
 constructs geometric space dimensions

 (indirectly (unobservable)
 observable)

 Measurement error Distance between Unique variance for
 geometric each indicator
 centroid and
 indicator position
 in space

 Inferential Rudimentary Strong (if
 properties assumptions are

 satisfied)

 Functional form of No specific Linear functional
 relationships functional form form

 Impact of sample Conventional: lower Non-conventional:
 size, role of null power leads to lower power
 hypothesis higher leads to higher

 probability of probability of
 rejecting a true failing to reject a
 model false model

 Impact of No impact Lower correlations
 magnitude of make models
 observed easier to fit
 correlations

 Assumptions on Weak Strong
 data

 ance structure analysis should be used with caution. Not
 only is the fitting criterion insensitive under these cir-
 cumstances, but the additional problems of the possibil-
 ity of low power of the chi-square test and the reversal of
 the role of null and alternative hypotheses suggest a high
 risk of finding support for a faulty model. Second, when
 discriminant validity between latent variables is an issue,
 distance structure analysis often helps to clarify the dis-
 tinction between lack of discriminant validity on the one
 hand and a strong predictive relationship on the other.
 Third, if the analyst is unwilling to assume multinormal-
 ity, independence of observations, and linear functional
 form, or if the sample size is small, the distance structure
 analysis approach developed in this article would appear
 to be a viable alternative to covariance structure analysis.

 Distance structure analysis may also be a useful tech-
 nique for specific analytic tasks. For example, one com-
 mon approach to the problem of correlated measure-
 ment error is to remove one common factor on the
 grounds that it represents a response tendency, person
 mean, or method effect. Since CMDS is responsive only
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 to ordinal properties of the data, such a procedure is un-
 necessary; removing true "halo" would not change the
 order of the data, only the magnitude. Another interest-
 ing application of CMDA is in the case of a theory that
 implies a non-linear structure such as a circumplex or
 radex (e.g., Quinn, Denison, and Hooijberg 1989). Such
 theories are well suited to analysis via CMDS but difficult
 to test using covariance structure analysis.

 The limitations of distance structure analysis are also
 quite clear. The statistical model underlying the method
 is basically descriptive and makes limited claim to infer-
 ential power. Interpreting distance models with both
 positive and negative measures of association repre-
 sented as distances also requires special attention. Never-
 theless, the approach developed here should be of value
 to most traditional MDS-type of applications in market-
 ing (e.g., positioning analysis, perceptual mapping) or
 whenever the analyst wants to incorporate prior notions
 (theory) into the analysis within a multitrait-multi-
 method framework.

 [Received June 1988. Revised October 1989.]
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